Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin.

نویسندگان

  • S Song
  • S Andrikopoulos
  • C Filippis
  • A W Thorburn
  • D Khan
  • J Proietto
چکیده

High-fat feeding has been shown to cause hepatic insulin resistance. The aims of this study were to investigate the biochemical steps responsible for enhanced gluconeogenesis as a result of increased dietary fat intake and the site or sites at which the antihyperglycemic agent metformin acts to inhibit this process. Male Hooded Wistar rats were fed either a standard chow diet (5% fat by weight) or a high-fat diet (60% fat by weight) for 14 days with or without metformin. Total endogenous glucose production and gluconeogenesis were determined using [6-(3)H]glucose and [U-(14)C]alanine, respectively. Gluconeogenic enzyme activity and, where appropriate, protein and mRNA levels were measured in liver tissues. The high-fat diet increased endogenous glucose production (21.9 +/- 4.4 vs. 32.2 +/- 4.8 micromol x kg(-1) x min(-1), P < 0.05) and alanine gluconeogenesis (4.5 +/- 0.9 vs. 9.6 +/- 1.9 micromol x kg(-1) x min(-1), P < 0.05). Metformin reduced both endogenous glucose production (32.2 +/- 4.8 vs. 16.1 +/- 2.1 micromol x kg(-1) x min(-1), P < 0.05) and alanine gluconeogenesis (9.6 +/- 1.9 vs. 4.7 +/- 0.8 micromol x kg(-1) x min(-1), P < 0.05) after high-fat feeding. These changes were reflected in liver fructose-1,6-bisphosphatase protein levels (4.5 +/- 0.9 vs. 9.6 +/- 1.9 arbitrary units, P < 0.05 chow vs. high-fat feeding; 9.5 +/- 1.9 vs. 4.7 +/- 0.8 arbitrary units, P < 0.05 high fat fed in the absence vs. presence of metformin) but not in changes to the activity of other gluconeogenic enzymes. There was a significant positive correlation between alanine gluconeogenesis and fructose-1,6-bisphosphatase protein levels (r = 0.56, P < 0.05). Therefore, excess supply of dietary fat stimulates alanine gluconeogenesis via an increase in fructose-1,6-bisphosphatase protein levels. Metformin predominantly inhibits alanine gluconeogenesis by preventing the fat-induced changes in fructose-1,6-bisphosphatase levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.

Metformin is widely used to treat hyperglycemia in individuals with type 2 diabetes. Recently the LKB1/AMP-activated protein kinase (LKB1/AMPK) pathway was proposed to mediate the action of metformin on hepatic gluconeogenesis. However, the molecular mechanism by which this pathway operates had remained elusive. Surprisingly, here we have found that in mice lacking AMPK in the liver, blood gluc...

متن کامل

Assessment of Metformin induced changes in cardiac redox state using hyperpolarized[1-13C]pyruvate

Background Metformin improves cardiovascular outcomes in diabetes, but its mechanism of action is controversial. Recent evidence suggests that Metformin reduces gluconeogenesis by altering hepatic redox state. Whether Metformin also alters cardiac redox state and metabolism is unknown, in part because of the difficulty in measuring cardiac metabolism in vivo. Hyperpolarized [1-C]pyruvate magnet...

متن کامل

Metformin causes a futile intestinal–hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state

OBJECTIVE Metformin, the first line drug for treatment of type 2 diabetes, suppresses hepatic gluconeogenesis and reduces body weight in patients, the latter by an unknown mechanism. METHODS Mice on a high fat diet were continuously fed metformin in a therapeutically relevant dose, mimicking a retarded formulation. RESULTS Feeding metformin in pharmacologically relevant doses to mice on a h...

متن کامل

Metformin-carbonic anhydrase interaction facilitate lactate accumulation in type 2 diabetes

Metformin has emerged as the most widely prescribed antidiabetic medication for the management of type 2 diabetes. Among the widely accepted mode of its action, is reduction of hepatic glucose production. The risk of lactic acidosis is common with metformin usage. Recent data revealed that Metformin, in addition to its glucose reduction action, might be responsible for specifically inducing lac...

متن کامل

Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP.

OBJECTIVE Metformin is an antidiabetic drug commonly used to treat type 2 diabetes. The aim of the study was to determine whether metformin regulates hepatic gluconeogenesis through the orphan nuclear receptor small heterodimer partner (SHP; NR0B2). RESEARCH DESIGN AND METHODS We assessed the regulation of hepatic SHP gene expression by Northern blot analysis with metformin and adenovirus con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 281 2  شماره 

صفحات  -

تاریخ انتشار 2001